EGU Session ST1.8 “Observing and Modelling the Solar Wind and its Transients (CMEs and SIRs) Through the Heliosphere” – Submission deadline January 20th 13:00CET

January 5, 2021, from David Barnes

Dear Colleague,

We invite abstract submissions to our session at EGU 2021 entitled “Any Way the Wind Blows: Observing and Modelling the Solar Wind and its Transients (CMEs and SIRs) Through the Heliosphere”

Link for abstract submission:

Session abstract:

The solar wind is an uninterrupted flow of highly ionised plasma that fills the heliosphere and is crossed by strong transient perturbations such as coronal mass ejections (CMEs) and (corotating) stream interaction regions (SIRs). These phenomena are capable of driving large disturbances at Earth as well as at the other planets. Remote-sensing observations from multiple vantage points, in-situ measurements from multiple well-separated locations, and novel modelling efforts have been employed systematically to study the properties of the solar wind plasma and of solar transients in general, from their formation to their arrival at different in-situ locations. However, despite the number of past and current spacecraft missions distributed throughout the heliosphere, it is still difficult to fully understand the properties of these phenomena, including their 3D structure (both global and local) and their evolution with heliocentric distance.

Studies of the ambient solar wind and its transient phenomena from their origin (the Sun) through their interplanetary journey are possible thanks to remote-sensing and in-situ observational data and models. From an observational perspective, for example, the recently launched Parker Solar Probe, BepiColombo, and Solar Orbiter have significantly increased the amount of available spacecraft in the inner heliosphere. From a modelling perspective, the recent years have seen an increase in both coronal and heliospheric models that operate in different regimes and dimensions. All these aspects will provide us with the perfect opportunity to test, validate, and refine the current knowledge of the solar wind and its transient phenomena and their interactions at different heliocentric distances. Accordingly, the aim of this session is to showcase the latest observational and modelling efforts regarding the origin and evolution of the solar wind, CMEs, and SIRs during their propagation throughout the heliosphere as seen from multiple vantage points, and to foresee future developments.

Kind regards,
David Barnes

On behalf of,
Erika Palmerio, Rui Pinto