121. Quasi-periodic problems; what’s going on with QPPs?

Author: Tishtrya Mehta from The University of Warwick

<< previous nuggetnext nugget >>

What are QPPs?

Solar flares, driven by magnetic reconnection, describe the phenomenon of a rapid and localised energy release from an active region on the Sun. The intensity of the electromagnetic radiation produced increases rapidly, in what we call the impulsive phase of the flare, and then after reaching its maximum value gradually falls back down to its pre-eruptive level in what is known as the decay phase. Flares can also be observed on other stars, where they’re known as stellar flares.

Within the emission associated with these flares we often see another behaviour which we call a quasi-periodic pulsation (QPP), where the flare’s brightness oscillates over its duration. The properties of QPPs vary widely across different flares – they can be long or short lasting, but typically have average periods in the range of several seconds to a few minutes [1]. They may also exhibit amplitude modulation, and the pulsations can vary substantially in shape. QPPs are often observed across many wavelengths as can be seen in the well-reported and discussed ‘Seven Sisters QPP’ shown in Figure 1 [2].

Although it is accepted that QPPs are a common feature of both solar and stellar flares, there is still disagreement as to how prevalent they are, with QPPs being reported in 30 – 90% of solar flares [3] [4]. The lack of consensus on the prevalence of QPPs is partly due to there being no single definition of a QPP. Different analysis techniques will vary in their ability at identifying QPPs of different shapes, periods, and durations, which will substantially change the number of QPPs it finds.

Figure 1. A series of QPPs, known as the ‘Seven Sisters event’ observed on June 7th 1980, was measured in multiple wavelengths ranging from x-rays to microwaves. Figure taken from (Kane et al., 1983)

Where are the non-periodic oscillations coming from?

As the name suggests, QPPs are rarely perfectly periodic. In fact many QPPs have been seen to have non-harmonic shapes, from triangular profiles to period or phase shifts over the duration of the flare. Some QPPs exhibit growth in their instantaneous period, the study of which could be key in determining the cause of quasi-periodic behaviour. Many different models have been proposed to explain the origin of QPPs (see [1] and references therein) but so far none have been definitively proven to be able to reproduce all of the variations in QPP behaviours that we observe.

Indeed, several of these models may be responsible but as of yet we don’t know which models are the most likely or accurate. Furthermore, it could be that different models can explain different classes of QPPs. In studying the prevalence and properties of non-stationary QPPs, we move one step closer to a full model of solar flares.

A case study of period growth in QPPs:

Let’s investigate a QPP case study which has shown evidence of period growth.
On the 19th of July 2012, the Sun produced an M7.7 class flare (which has since been reclassified as a X.1 class flare, following the removal of the SWPC scaling factors) and an accompanying coronal mass ejection, which gave rise to some beautiful coronal rain as seen here. This long duration flare lasted almost three hours and was observed by both the Geostationary Operational Environmental Satellites (GOES) X-ray Sensor and Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory.

We detrend the flare, measured in soft X-ray (1-8 Angstrom) by GOES-15, using Empirical Mode Decomposition (EMD) and the resulting detrended signal can be seen in the top panel of Figure 2. The detrended flux shows oscillatory behaviour characteristic of the QPP phenomenon. The amplitude of the QPPs is modulated throughout the different stages of the flare; the QPPs’ amplitude grows during the impulsive phase, reaches a maximal value at flare maximum, and then decreases over the decay phase until around 07:10 where the amplitude of the QPP returns to the approximate noise level of the pre-flare signal.

The continuous wavelet spectrum of the normalised QPPs (found by dividing the detrended flux by its Savitzky-Golay Envelope) seen in the bottom panel of Figure 2 shows an increase in instantaneous period of the QPPs. The period grows from about 300 seconds at 06:00 to around 600 seconds at 07:00, with the rate of period growth appearing approximately linear.

Figure 2. QPPs from an M7.7 class flare (inlay top panel) on 19th July 2012 as measured in soft X-ray by GOES-15. Top Panel: Profile of rescaled detrended flux (black), and its Savitzky-Golay envelope (orange). Bottom Panel: Continuous wavelet spectrum of the normalised detrended flux. Bottom Right Panel: Global wavelet spectrum of the normalised detrended flux.

So now what?

Now that we’ve found proof of period growth in one QPP it’s not unlikely that we’ll find it in others. So the question remains – what’s causing this phenomenon? Is it due to one, or a combination, of the proposed QPP generation mechanisms already suggested? Or is it a result of something else- such as physical changes in the flaring region? We envisage that more in-depth studies of QPPs and their associated period drifts will hold the key to cracking this conundrum and pave the way for a better understanding of QPPs and flare events.

This UKSP Nugget is based on the work by L. Hayes and T. Mehta and is in final stages of preparation to be submitted for publication

References

  • [1] Zimovets et al., 2021, SSRv, 217, 5
  • [2] Kane et al., 1983, ApJ, 271, 376
  • [3] Inglis et al., 2016 ApJ, 833 284
  • [4] Dominique et al., 2018, SoPh, 293, 4